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Abstract. An innovative tool for modelling specific flood volume was presented, which can be applied to assess the need for 18 

stormwater network modernisation as well as for advanced flood risk assessment. Field measurements for a catchment area in 19 

Kielce, Poland were used to apply the model and demonstrate its usefulness. This model extends the capabilities of recently 20 

developed statistical and/or machine learning hydrodynamic models developed from multiple runs of the U.S. EPA’s Storm 21 

Water Management Model (SWMM) model. The extensions enable inclusion of: 1) characteristics of the catchment, and its 22 

stormwater network, calibrated model parameters expressing catchment retention and the capacity of the sewer system, (2) 23 

extended sensitivity analysis and (3) risk analysis. Sensitivity coefficients of calibrated model parameters include correction 24 

coefficients for percentage area, flow path, depth of storage, impervious area, Manning roughness coefficients for impervious 25 

areas, and Manning roughness coefficients for sewer channels. Sensitivity coefficients were determined with regard to rainfall 26 

intensity and characteristics of the catchment and stormwater network. Extended sensitivity analysis enabled an evaluation of 27 

the variability of the specific flood volume and sensitivity coefficients within a catchment, in order to identify the most 28 

vulnerable areas threatened by flooding, Thus, the model can be used to identify areas particularly susceptible to stormwater 29 

network failure and the sections of the network where corrective actions should be taken to reduce the probability of system 30 

failure. The developed simulator to determine a specific flood volume represents an alternative approach to the SWMM model 31 

that, unlike current approaches, is calibratable with limited topological data availability, therefore generates a lower cost due 32 

to the less amount and specificity of data required. 33 

 34 

 35 

 36 
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Highlight 37 

 simulator of a specific volume of flood as an alternative to the SWMM model,  38 

 sensitivity analysis extension considering rainfall and catchment topological data, 39 

 the probability of failure of the stormwater system as a criterion for corrective actions under conditions of uncertainty 40 

 41 

1 Introduction 42 

Climate change and urbanization are the main factors increasing the pressure on the functioning of sewer networks, 43 

in particular components responsible for stormwater management (Miller et al., 2014; Hettiarachchi, et al, 2018; Khan et al, 44 

2022). This results in an increase in the frequency and volume of stormwater flooding, deterioration of the living standards of 45 

the inhabitants, and pipes abrasion (Jiang et al., 2018; Zhou et al. 2018; Chang et al. 2020). The literature data (Siekmann et 46 

al. 2011) shows that the basis for making decisions on corrective actions (replacement of a pipe, removal of sediments, 47 

construction of a reservoir, etc.) is the specific flood volume expressing the volume of stormwater flooding on a unit impervious 48 

surface. Limiting values for the specific flood volume have been determined by Siekmann and Pinnekamp (2011), based on 49 

simulations for urban catchments, as the basis for the maintenance of the sewage network and the criterion for making decisions 50 

on modernization or corrective actions.  51 

In order to obtain a required hydraulic efficiencies, simulation models are typically used to plan corrective actions 52 

(Kirshen et al. 2014). For this purpose, mechanistic models are used, such as the USEPA’s Storm Water Management Model 53 

(SWMM), which account for surface runoff, drainage of the sewage network, and flooding of stormwater during system 54 

overload (Guo et al. 2021; Li et al. 2022; Yang et al., 2022). As in the case with other mechanistic models (MOUSE, 55 

PCSWMM, MIKE URBAN etc.), SWMM can incorporate the spatial characteristics of a sewage network, as well hydraulic 56 

conditions, in calculations that predict and characterize stormwater flooding (Martins et al. 2018; Yang et al., 2020; Ma et al., 57 

2022). However, such models are characterized by high specificity (one model can be used for one catchment), and they require 58 

the collection of detailed data and measurements (rainfall, runoff), which is labour-intensive and generates high costs. 59 

Moreover, there are a strong interactions between the calibrated parameters (Wu et al. 2013; Chen et al. 2018; Sonavane et al. 60 

2020; Shrestha et al., 2022), leading to uncertainty of simulation results (Ball 2020; Kobarfard et al. 2022; Sun et al. 2022) 61 

which complicates to select specified corrective action (Kim et al. 2017; Bobovic et al. 2018; Hung and Hobbs 2018). To solve 62 

this problem, an important step in the development of the computational algorithm is the implementation of sensitivity analysis 63 

(Fraga et. al. 2016; Cristiano et al. 2019; Razavi and Gupta 2019). Simulations by Szeląg et al. (2021) have shown the influence 64 

of uncertainty in calibrated SWMM parameters on the calculation of specific flood volume and degree of flooding, which was 65 

also confirmed by the simulations of Fraga et al. (2016) and Kelleher et al. (2017). 66 

 To overcome the limitations of MCM, the implementation of statistical and/or machine learning methods seems is a 67 

prospective alternative (Rosenzweig et al. 2021; Lei et al. 2021; Bui et al. 2019; Shafizadeh-Moghadam et al. 2018; Chen et 68 

al. 2019; Fong and Chui, 2020). ML methods can estimate of specific stormwater flood volume for a catchment area with 69 

different topology. However, so far, no simulator model based on statistical and/or machine learning has been developed to 70 
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simulate specific stormwater flood volume while taking into account the factors included in mechanistic models (Mignot et 71 

al., 2019; Guo et al. 2021; Rosenzweig et al. 2021). Some progress in application of machine learning methods to simulation 72 

of stormwater flooding has been made. Thorndahl et al. (2008), based on simulation results of flooding from manholes, 73 

including uncertainty of calibrated parameters, developed a model using the FORM (first order reliability model) method. Jato-74 

Espino et al. (2018) and Li and Willems (2020), conducting simulations with mechanistic models, present models (logisitc 75 

regression) for identification of flooding from a single manhole based on rainfall frequency, catchment and stormwater network 76 

characteristics. Therefore, Szeląg et al. (2022a, 2022b) proposed a models for calculating estimates of stormwater flooding in 77 

a catchment, but due to insufficient data in constructing the model, application is limited. In the aforementioned models, 78 

interactions between land use, catchment and stormwater network characteristics, as well as system capacity were neglected. 79 

However, by omitting these factors, at the spatial planning stage, reduces the applicability of the model. 80 

Another important indicator of proper sewage network management is the assessment of the risk of system failure 81 

(exceed the maximum specific flood volume). Reliable risk assessment requires the integration of mechanistic models, 82 

statistical approach and simulators of rainfall data (Fu et al. 2012; Zhou et al. 2019; Venvik et al. 2020). Most of the methods 83 

(Ursino 2014; Cea and Costabile 2022; Taromideh et al. 2022) focus on determining the impact of climatic changes in rainfall 84 

on the efficiency of the sewage system and include the impact of parameters expressing terrain and sewer retention. Currently, 85 

there is no effective method of risk analysis taking into account the uncertainty of the calibrated parameters to simulate a 86 

specific flood volume for the different urban catchments. 87 

The aim of the article was to develop an innovated simulator, combined with risk assessment and sensitivity analyses 88 

for calculating the specific flood volume, taking into account rainfall data, catchment characteristics and topology. Recognition 89 

of the above factors enabled the application of the proposed logistic regression model to identify stormwater flooding in 90 

catchments with different characteristics, as an alternative approach to the SWMM model. An important aspect of the proposed 91 

approach was the risk assessment of system failure (specific volume of flood exceed 13 m3·ha-1) and sewage system operation 92 

under uncertainty. Moreover, the methodology presented in the work, integrated with the stormwater flooding simulator, 93 

enabled the identification of the impact of calibrated SWMM parameters on the results of the sensitivity analysis in catchments 94 

with different characteristics. This feature enables building a mechanistic model, which allows appropriate selection of 95 

techniques for measuring input data, which can ultimately reduce the costs of applying the model. The developed methodology 96 

enables the appropriate selection of devices for measuring the flow rate, and their location in the sewage network in the context 97 

of calibrating the catchment model and reducing the costs of flow measurements. 98 

 99 

2 Case study 100 

The analysed urban catchment is located in the south-eastern part of Kielce, central Poland, Świętokrzyskie region 101 

(Fig.1). Residential districts, public buildings, main and side streets are located in the study area. The catchment area covers 102 

63 ha and consists of 40% impervious and 60% permeable areas. The road density is 108 m·ha-1 (Wałek, 2019), and the terrain 103 

denivelation is 11.20m (the ordinates of the highest and the lowest points of the terrain are 271.20 m and 260 m above sea 104 
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level, respectively). The length of the main interceptor channel in the stormwater network is 1569 m, with an average slope of 105 

0.71%. The diameter of the main interceptor expands from 600 to 1250 mm, while the diameters of side sewers vary between 106 

300 and 1000 mm. The slope of the sewers varies between 0.04 and 3.90%. 107 

 108 

Figure. 1. Study catchment area (Wałek, 2019). 109 
 110 

The analysed stormwater system is separated from the municipal sewage. Stormwater flows to the division chamber (DC), and 111 

after reaching a depth of 0.42 m it flows into a stormwater treatment plant (STP). During heavy rainfall, when the stormwater 112 

level in the DC exceeds the overflow level (OV), it is discharged by the storm overflow (OV) into the S1 channel, which 113 

transports the stormwater directly to the Silnica river (without treatment). At a 3.0 m distance from the inlet of the main 114 

interceptor to the DC, the flow meter MES1 is installed, which measures the flow rates during heavy rainfall with resolution 115 

of 1 minute. Analysis of data from 2010–2020 showed that during dry periods the measured flow rates varied between 1–9 116 

dm3·s-1, which indicates that infiltration occurs in the stormwater network. Measurements of stormwater network operation 117 

carried out in the years 2008–2019 indicated that stormwater flooding occurs in the analysed catchment. Taking into account, 118 

159 episodes of rainfall –  runoff, within four catchments, 23 cases of flooding were observed. At a distance of 2.5 km from 119 

the catchment boundary, a rainfall measurement station is located, which provides constant measurement of rainfall, with a 1-120 

minute temporal resolution.  121 

 122 

Sub-catchment division and characteristics 123 

The analysed catchment was divided into sub-catchments (Szeląg et al. 2022), which constituted study areas for 124 

identification of stormwater flooding. Due to limited amount range of rainfall data, the obtained model for simulation of 125 

stormwater overflow did not include all important factors, such as dry period duration between rainfall events, retention 126 
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catchment that impact flooding phenomenon, which meant that the model had limited predictive capability. Detailed 127 

description and justification of sub-catchments used for construction of flooding identification model was presented by Szeląg 128 

et al. (2022). In reference to approach proposed by Duncan et al. (2011), Jato – Espino et al. (2018), Li and Willems (2022), 129 

in the current analysis the number of sub-catchments used for development of a logit model was increased to 8 (Figure 2). The 130 

sub-catchments boundaries together with data on spatial development and stormwater network (Table 1) were determined 131 

based on maps for design purposes, which was discussed in detail by Szeląg (2013).  132 

 133 

Table. 1. Characteristics of sub-catchments  134 

No. F Imp Vk Gk R.t. Vkp dH1 dHp Lk Jkp Hst Impd Gkd Vrd Vkd 

  ha - m3 m·ha-1 m m3 m m m - m - m·ha-1 m3 m3 

J 12.66 0.37 157.0 0.0079 1.74 33.2 0.24 0.25 96.5 0.0036 1.42 0.40 0.0072 2159.4 2577.2 

K 18.92 0.38 360.4 0.0084 1.69 28.4 0.31 1.05 56.5 0.0055 2.36 0.40 0.0063 1886.8 2373.7 

L 27.15 0.36 557.4 0.0074 2.74 29.6 0.34 1.75 59.0 0.0058 2.36 0.42 0.0053 1496.0 2176.7 

M 29.78 0.36 678.8 0.0068 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.43 0.0050 1373.3 2055.3 

N 36.78 0.37 712.2 0.0081 4.49 48.7 0.38 1.15 62.0 0.0061 2.32 0.44 0.0040 1061.4 2022.0 

O 41.31 0.32 858.2 0.0079 5.32 16.1 0.21 1.28 20.5 0.0102 2.31 0.49 0.0037 825.9 1876.0 

P 45.42 0.37 981.9 0.0082 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.46 0.0027 682.2 1752.3 

R 48.31 0.37 981.9 0.0088 5.64 16.1 0.21 1.28 20.5 0.0102 2.31 0.47 0.0023 553.1 1752.3 

S 55.41 0.41 1240.2 0.0092 8.47 67.5 0.67 1.8 86.0 0.0078 2.31 0.55 0.0011 258.4 1493.9 

where: F – catchment surface area; Imp – impervious area; Vk – volume of stormwater channel; Gk – length of stormwater 135 

channel per impervious area of the catchment; R.t. – height difference of the channel, Vkp – volume of the channel above the 136 

cross-section of a catchment; dH1 – height difference of the terrain at section above cross-section r; dHp – height difference 137 

at section above cross-section; Lk – length of channel above cross-section of a catchment; Jkp – channel slope above cross-138 

section of a catchment; Hst – the height of a manhole at cross-section; Imp – impervious area of downstream area; Gkd – 139 

length of a channel per impervious area below cross-section; Vrd – catchment retention above the cross-section calculated as 140 

Vrd = F·(Imp·dimp+(1-Imp)·dper), Vkd – total retention of a catchment. 141 

 142 

Data were verified using independent analysis performed by Wałek (2019), who used Qgis program to develop spatial 143 

development model and stormwater network for Kielce. Location of closing cross-sections of sub-catchments (J, K, L, M, M, 144 

O, P, R, S) along the main interceptor were additionally supported by simulation results of outflow hydrographs developed by 145 

Wałek (2019) with use of HEC-HSM model as well as by Szeląg et al. (2014, 2022) with use of hydrodynamic model SWMM. 146 

 147 

3 Methodology 148 

3.1. Criterion for stormwater system operation and modernisation 149 
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The value of a specific flood volume was defined as stormwater flooding per unit impervious area, which can be 150 

expressed by the following formula (Sinekamp and Pinekamp, 2011): 151 

                                                                            𝜅 =
∑ 𝑉𝑡(𝑖)
𝐾
𝑖=1

𝐴𝑖𝑚𝑝
                                                                   (1) 152 

where: Vt – volume of stormwater flooding from i-th manhole of the stormwater network, K – number of manholes, Aimp – 153 

impervious area. Sinekamp and Pinekamp (2011) based on continuous simulations with hydrodynamic models for 3 urban 154 

catchments found that the specific flood volume ranged from 0 - (>20) m3·ha-1.  155 

On this basis, they established limiting κ values expressing the need to improve the operating conditions of the drainage system. 156 

They showed that for κ > 13 m3·ha-1 the drainage system requires adaptation This was also confirmed by the calculations of 157 

Kotowski et al. (2014) for the catchment in Wroclaw and Szeląg et al. (2021) for the catchment in Kielce. This allows us to 158 

conclude for urban catchments (Poland, Germany) that the κ value quoted above can be a criterion for making decisions on 159 

corrective actions of the drainage network. 160 

 161 

3.2. Simulator structure and development 162 

The concept of the proposed of tool based on simulator integrated with the risk assessment and sensitivity analysis to 163 

evaluate operation of sewage system was presented in Fig. 2.Applying the MCM of an urban catchment with separate sub-164 

catchments (varying land use and topology), a simulator of the specific flood volume was developed as an alternative approach 165 

to the SWMM. A proposed simulator of logistic regression model based on rainfall data, catchment and stormwater network 166 

characteristics, SWMM parameters (width of runoff path, retention depth of impervious areas, Manning roughness coefficient 167 

of impervious areas, correction coefficient of impervious areas, Manning roughness coefficient of channels). The resulting 168 

tool enables fast analysis of sewer network performance even with limited data access and can be applied to other catchments. 169 

Proposed methodology is based on extension of algorithms given by Szeląg et al. (2021, 2022). In contrast to previous studies 170 

(Szeląg et al. 2022), the current approach took into account the retention of the catchment and the sewer network, and the 171 

performance criterion of the sewer network was the volume of flooding and not just the fact that it occurred. Integration of the 172 

simulator with an analytical relationship for sensitivity coefficient calculations for logistic regression allows fast evaluation of 173 

the impact of MCM parameters on flooding for arbitrary catchment characteristics and topological data. In order to provide 174 

more reliable simulation results, the proposed risk assessment took into account the uncertainty of the SWMM parameters and 175 

enabled the optimisation of the operation of the sewer network based on the maximum allowable values of the channel Manning 176 

roughness coefficients. 177 
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 178 

Figure. 2. Algorithm for developing an advanced tool to simulate a specific flood volume (situation maps in module 179 

(1a), (1b) by Walek (2019). 180 
 181 

3.3. Algorithm structure  182 

The proposed computation algorithm consists of 9 modules. Modules 1, 2, 3, 4 include identical steps as in the work 183 

of Szeląg et al. (2021, 2022). In the present study, the scope of the analyses was extended, as in addition to precipitation data 184 

and SWMM parameters (Szeląg et al. 2022), the characteristics of the catchment and the stormwater network of the separated 185 

sub-catchments were also included (module 1), which was used to determine the computational model. On the basis of spatial 186 

data (1a, 1b), a mechanistic model of the catchment was built (module 2), which allowed to perform an uncertainty analysis 187 

using the GLUE method (module 3). On this basis, simulations were performed in separated sub-catchments for rainfall events 188 

(1e) under uncertainty (module 4). Based on the simulation results a logistic regression model was developed (module 5) to 189 

calculate the local sensitivity coefficients for calibrated SWMM parameters, with regard to rainfall intensity and catchment 190 

characteristics (module 6). Modules 1, 2, 3, 4 included analyses to determine a specific flood volume simulator that can be 191 

applied to any catchment. Thus, future algorithm implementation for the new catchment, will ultimately include only modules 192 
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6, 7, 8. Using adopted rainfall data, the sensitivity coefficients of SWMM model parameters for sub-catchments are computed 193 

and maps showing sensitivity changes in catchment scale are drawn (module 6). While the model is applied to identify 194 

stormwater flooding, the possible methods for improving stormwater network operating are analysed inside module 7, 8. 195 

Computations using the developed algorithm consist of the following steps: 196 

1) collecting of the input data (catchment characteristics – 1a, stormwater network characteristics – 1b, rainfall – runoff 197 

episodes – 1c), separation of independent rainfall episodes – 1d, division and determination of characteristic of sub-catchments 198 

– 1e,  199 

2) development of hydrodynamic model (module 2) based on catchment characteristics (1a) and stormwater network 200 

characteristics (1b), 201 

3) conducting of uncertainty analysis with GLUE method (section 3.3.3) using hydrodynamic model of a catchment based on 202 

rainfall – runoff episodes (1d),  203 

4) using independent rainfall events (1d) simulations with hydrodynamic model including uncertainty of calibrated parameters 204 

according to points (4a, 4b, 4c) are conducted;  205 

a) simulation of SWMM parameters (a posteriori distribution) in Table S1 using the results of uncertainty analysis, 206 

b) simulation of stormwater network operation during independent rainfall events (1d) including uncertainty (4a),  207 

c) computation of specific flood volume in each sample of independent rainfall events in sub-catchments; 208 

transformation of determined κ values to classification data (section 4a), 209 

5) determination of logistic regression simulator SWMM of specific flood volume as alternative to MCM model based on 210 

results of computations in point 4c, 211 

6) sensitivity analysis: 212 

a) computations of sensitivity coefficients (with regard to SWMM parameters) for assumed rainfall data and catchment 213 

characteristics, 214 

b) computations of sensitivity coefficients for sub-catchments (J, K, L, M, N, O, P, R, S), 215 

7) application of developed logistic regression model for amelioration of stormwater network operation, 216 

a) analysis of the impact of corrective variants on sensitivity coefficients in sub-catchments,  217 

8) analysis of failures occurrence. 218 

 219 

3.3.1. Determination of independent rainfall events (module 1e) 220 

Determination of independent rainfall events for the period 2010 - 2021 was based upon criteria defined in DWA A-221 

118 (2006) guidelines. The minimum time period between independent rainfall events was set as 4.0 hours. Computation of 222 

stormwater flooding was performed for rainfall events with a minimum depth of P t = 5.0 mm (Fu and Butler, 2014) and only 223 

for those events that resulted from convection rainfalls (i.e., rainfall duration below 120 min). For the analysed catchment, it 224 

was indicated that stormwater flooding occurs for C = 2, 3, 5 and rainfall duration tr = 120 min (Szeląg et al., 2021). The 225 

computed values of specific flood volume (the upper limit of 95% confidence interval) are κ = 45 m3·ha-1. Analyzing of the 226 
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rainfall data, it was observed that the number of rainfall events with depths of Pt = 5.2–42 mm ranged from 12 to 30 in each 227 

year (210 rainfall events altogether), while the rainfall durations were between tr = 15 –120 min. 228 

 229 

3.3.2. Hydrodynamic catchment model (module 2) 230 

 Stormwater flooding volume calculations were performed with the SWMM model using the ,,Flooding" function 231 

(Szeląg et al. 2021). Based on the results of 𝑄(𝑡) for j – manholes (j = 1, 2, 3 ..., k) in the sub-catchments (J, K, L, M, N, O, 232 

P, R, S), the total flooding volume 𝑉𝑗 = ∫𝑄(𝑡)𝑑𝑡 was determined, which allowed specific flood volume (κ) values to be 233 

determined from Equation (1).   234 

 The model of analysed catchment covers 62 ha and is divided into 92 sub-catchments with areas varying from 0.12 235 

to 2.10 ha and impervious areas ranging 5 to 95%. The model comprises 82 nodes and 72 sections of channels. At the 236 

calibration stage method of the ,,trial and error”, the mean retention of the catchment equal of 4.60 mm. The Manning 237 

coefficient of impervious areas was found to be 0.025 m-1/3·s and 0.10 m-1/3·s for pervious areas. The flow path width was 238 

determined using the formula W=α·A0.50, where: α = 1.35. Catchment model calibration performed by Szeląg et al. (2021) 239 

indicated that for 6 rainfall-runoff events, a very good fit of modelling outflow hydrographs to measurement results was 240 

obtained (Nash - Sutcliff coefficient was 0.85 - 0.98, coefficient of determination was equal to 0.85 - 0.99, hydrograph volumes 241 

and maximum flows did not exceed 5% compared to measurement data).  242 

 243 

3.3.3. Uncertainty analysis – GLUE (module 3) 244 

In the GLUE method, the identification of model parameters was considered as a probabilistic task due to the large 245 

number of parameters characterizing processes occurring in urban catchments (runoff, infiltration, flow in stormwater conduits, 246 

flooding) – Szeląg et al. (2021), Kiczko et al. (2018), Mannina et al. (2018). The identification of model parameters in the 247 

GLUE method depends on the transformation of an a priori distribution to an a posteriori distribution by means of a likelihood 248 

function 𝐿(𝑄/𝜃), which determines the probability of a combination of parameters depending on the quality of fit of the 249 

calculation result to the measured values. Uniform distribution of SWMM parameters was assumed (Table S1). Mathematical 250 

models used for description of surface runoff usually do not include runoff distribution and at most they include the range of 251 

admissible values of parameters resulting from their physical interpretation (Dotto et al., 2014; Knighton et al., 2016). 252 

Identification of distributions a posteriori and determination of likelihood functions the rainfall - runoff episodes 30 May 2010 253 

and 8 July 2011 were used, while for verification the episodes from 15 September 2010 and 30 July 2010 were applied. Subsequent 254 

computation steps of GLUE analysis were discussed in detail in Supplementary Information (Section 1).  255 

 256 

3.3.4. Simulation of stormwater network operating with regards to uncertainty (module 4) 257 

Based on the results of GLUE (a posteriori distribution SWMM parameters, 5000 sampling), the computation of 258 

stormwater network was performed for separate 175 independent rainfall events and 9 subcatchments; 35 events were used to 259 

validate the model. The values of specific flood volume for sub-catchments (J, K, L, M, N, O, P, R, S) were calculated and 260 
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zero-one variables were established to develop logistic regression model. For computed values of specific flood volume (κ ≥ 261 

13 m3·ha-1) the variable value was denoted as 1, while in the opposite case it was 0 (Siekmann and Pinekamp, 2011).  262 

 263 

3.3.5. Developing a logistic regression model – simulator specific flood volume (module 5) 264 

Logistic regression model (LRM) is a tool used for classification. This model has been already applied for modelling 265 

stormwater flooding (Szeląg et al., 2020), identifying stormwater flooding from manholes (Jato – Espino et al., 2018) and the 266 

technical condition of sewage systems (Salman and Salem, 2012). The logistic regression model is described by the following 267 

equation: 268 

                    𝑝𝑚 =
exp(𝛼0+𝛼1·𝑥1+𝛼2·𝑥2+𝛼3·𝑥3+⋯+𝛼𝑖·𝑥𝑖)

1+exp(𝛼0+𝛼1·𝑥1+𝛼2·𝑥2+𝛼3·𝑥3+⋯+𝛼𝑖·𝑥𝑖)
=

exp(𝑋)

1+exp(𝑋)
=

𝑒𝑥𝑝(𝑋𝑟𝑎𝑖𝑛+𝑋𝑆𝑊𝑀𝑀+𝑋𝐶𝑎𝑡𝑐ℎ𝑚)

1+𝑒𝑥𝑝(𝑋𝑟𝑎𝑖𝑛+𝑋𝑆𝑊𝑀𝑀+𝑋𝐶𝑎𝑡𝑐ℎ𝑚)
                     (2)                                    269 

where pm – probability of a specific flood volume (understood as the need to corrective actions the stormwater network); α0 – 270 

absolute term; α1, α2, α3, αi – values of coefficients estimated with the maximum likelihood method, X – vector describing the 271 

linear combination of the independent variables; Xrain/ XSWMM/ XCatchm – vector describing linear combination of statistically 272 

significant:  273 

(a) rainfall characteristics (𝑋𝑟𝑎𝑖𝑛 = ∑ 𝛼𝑠 · 𝑥𝑠
𝑡
𝑠=1 ),  274 

(b) SWMM parameters (𝑋𝑆𝑊𝑀𝑀 = ∑ 𝛼𝑘 · 𝑥𝑘
𝑚
𝑘=1 ),  275 

(c) catchment characteristics, and stormwater network characteristics confidence level – 0.05 (𝑋𝐶𝑎𝑡𝑐ℎ𝑚 = ∑ 𝛼𝑝 · 𝑥𝑝
𝑟
𝑝=1 ); xi – 276 

independent variables describing rainfall characteristics, e.g., rainfall depth, its duration, and the parameters calibrated in the 277 

SWMM, catchment characteristics (permeability, terrain retention, density of stormwater network, length, slope, retention in 278 

stormwater channels etc.).  279 

Independent variables in the logit model were calculated using the forward stepwise algorithm, recommended for the creation 280 

of such models. At the same time, it also ensures the elimination of correlated independent variables (Harrell 2001). The 281 

estimation of the coefficients αi in Equation (4) and thus the determination of the logistic regression model involved two stages: 282 

learning (80%) and testing (20%). Optimisation of the pm threshold, equations for determining measures of fit between 283 

computational results and measurements was provided in Supplementary Information (Section 2). A validation of the obtained 284 

logistic regression was additionally performed using the SWMM model for 35 rainfall events (catchment characteristics and 285 

topological data were analysed for separated sub-catchments J, O, S within ±20%), in order to assess the extent of applicability 286 

of the obtained model. 287 

 288 

3.3.6. Sensitivity analysis (module 6) 289 

According to literature data (Morio, 2011), despite simplifications, local sensitivity analysis is widely applied at the 290 

calibration stage and while analysing the hydrodynamic catchment models. In our study, the sensitivity coefficient was 291 

calculated from the equation (Petersen et al. 2012):  292 

https://doi.org/10.5194/hess-2023-63
Preprint. Discussion started: 11 April 2023
c© Author(s) 2023. CC BY 4.0 License.



11 

 

                                                                             𝑆𝑥𝑖 =
𝜕𝑝𝑚

𝜕𝑥𝑖
∙
𝑥𝑖

𝑝𝑚
                                                                                                (3) 293 

Where, knowing that 
𝜕𝑝𝑚

𝜕𝑥𝑖
= 𝛽𝑖 · 𝑝𝑚 · (1 − 𝑝𝑚), after transformations, the following formula was obtained (Fatone et al. 2021): 294 

                                                            𝑆𝑥𝑖 = 𝛽𝑖 · 𝑥𝑖 · (1 − 𝑝𝑚)                                                                                            (4)    295 

Value of the Sxi was calculated for calibrated SWMM parameters (Table S1), at the same time analysing the impact of rainfall 296 

duration (tr = 30 – 90 min) for rainfall depth Pt = 10 mm (representative value for analysing stormwater network functioning 297 

according to DWA – A 118, corresponding to a heavy rainfall event). For the above assumptions, Sxi was determined for 298 

different catchment characteristics, which at the same time helped to evaluate the interactions between rainfall data and the 299 

parameter SWMM.  300 

The probability of the specific flood volume (pm) was computed using the logistic regression model for the sub – 301 

catchment characteristics defined in Table 2 and SWMM parameters established during calibration (Szeląg et al., 2016) for 302 

maximum convection rainfall intensity for tr = 30 min and Pt = 9.62 mm for Kielce (Section 3 at Supplementary Information). 303 

The calculations of Szeląg et al. (2022) proved that in the urban catchment in question there is a hydraulic overload of the 304 

stormwater system due to convective rainfall. At the same time, the sensitivity coefficients for calibrated SWMM model 305 

parameters were calculated. On this basis the spatial variability of Sxi for the sub-basins was determined. 306 

 307 

3.3.7. Application of the logit model to analyse stormwater operating and catchment management (module 8) 308 

If the stormwater network ceases to function properly and the threshold value of pm is exceeded, some possible 309 

improvements were suggested, including: (a) increasing the retention depth of impervious areas, i.e. an increase of d imp from 310 

2.50 mm to 3.50 mm, and at the same time raising the Manning roughness coefficient from nimp = 0.025 m-1/3·s to nimp = 0.035 311 

m-1/3·s, (b) an increase of hydraulic capacity by reducing the Manning roughness coefficient for stormwater channels from nsew 312 

= 0.018 m-1/3·s to nsew = 0.012 m-1/3·s. In addition, the possible change of spatial development of urban catchment area was 313 

taken into consideration. Finally, combinations of the above-mentioned computation variants were analysed. When the values 314 

of independent variables (catchment characteristics) adopted for the calculations exceeded the lower/upper (e.g., for Imp = 315 

0.32 - 0.41) limit of applicability of the determined logit model, the simulation results were verified with the mechanistic 316 

model. The verification procedure consisted of three steps: 317 

a) computation of the probability of specific flood volume for rainfall with durations in the range of tr = 30 – 90 min to assess 318 

stormwater network operating, 319 

b) simulation with a calibrated hydrodynamic model for rainfall data as in step (a),  320 

c) comparison of computation results obtained in steps (a), (b); in the event of a of good fit, i.e., proper identification of specific 321 

flood volume, the results obtained from the logit model can be accepted. Three specific corrective variants have been defined 322 

as presented in Table S2. 323 

  324 

3.3.8. Probability of stormwater network failure (module 9) 325 
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 The probability of failure (Sun et al., 2012; Karamouz et al., 2013) was used to analyze the performance of the sewage 326 

network in a rainfall event. In the calculations, a failure was defined as an episode (assumed rainfall data, catchment 327 

characteristics, sewer network, SWMM parameters described by a posteriori distribution - GLUE results discussed in Section 328 

3.3.3) in which κ ≥ 13m3·ha-1 (pm ≥ pm,cr) is exceeded. However, the probability of failure was calculated from the equation: 329 

                                                             𝑝𝐹 =
∑ 𝑍𝑗
𝑁
𝑗=1

𝑁
, 𝑤ℎ𝑒𝑟𝑒:𝑍𝑗 = {

1;𝑝𝑚 ≥ 𝑝𝑚,𝑐𝑟

0;𝑝𝑚 < 𝑝𝑚,𝑐𝑟
                                                                 (5) 330 

where: pm – probability of specific flood volume (exceedance of this value indicates a failure), pF – probability of the stormwater 331 

network failure in the event of rainfall, Zj – function describing stormwater network operation, for Zj = 1 – drainage system requires 332 

modernisation; otherwise, i.e. Zj = 0 – modernisation is not necessary. 333 

Based on Equation (5) for the assumed characteristics (rainfall, catchment, drainage network), the operating conditions of the 334 

stormwater network were determined. Hence, an algorithm is given to calculate the performance improvement of a sewer network 335 

in the context of failure probability (pF) reduction. The above effect was obtained by introducing thresholds of maximum permissible 336 

values of Manning roughness coefficients of sewers nsew(m). It was assumed that if the value of nsew (the value from the a posteriori 337 

distribution) exceeds the maximum permissible value - nsew(m) and determines the occurrence of failure (Zj = 1) and the need to 338 

modernize the sewers, it should be corrected in such a way that pm < pm,cr. The above calculations were reduced to the following 339 

steps:  340 

a) a posteriori distribution of calibrated SWMM model parameters (N = 5000 samples),  341 

b) computation of probability of specific flood volume for N items and establishment of failure probability,  342 

c) computation of the Manning roughness coefficient for channels when pm > pm,cr from the following formula: 343 

                                          𝑛𝑠𝑒𝑤 =
1

𝛼𝑛𝑠𝑒𝑤
· [𝑙𝑛 (

𝑝𝑚,𝑐𝑟

1−𝑝𝑚,𝑐𝑟
) − (∑ 𝛼𝑘 · 𝑥𝑘

𝑚−1
𝑘=1 ) − 𝑿𝑟𝑎𝑖𝑛 − 𝑿𝐶𝑎𝑡𝑐ℎ𝑚]                                                    (6) 344 

where: k = 1, 2, 3, …, m – calibrated SWMM model parameters; k = 1, 2, 3, …, m; αnsew – estimated coefficient in logistic regression 345 

model for the Manning roughness coefficient for channels (derivation of the Equation 6 was presented in the Supplementary 346 

Information – Section 4),  347 

d) establishment of empirical distribution describing the nsew values calculated from Equation (6),  348 

e) computation of nsew values from Equation (8) for nsew(un) ≤ nsew(m) (where: nsew(un) – Manning roughness coefficients of channels 349 

computed in step (a), nsew(m) – maximal boundary (threshold) value of Manning roughness coefficient for channels), when nsew(un) ≥ 350 

nsew(m) to nsew = nsew(un),  351 

f) computation of probability of specific flood volume and probability of failure (pF),  352 

g) determination of empirical distribution (CDF) for nsew, 353 

h) steps e – g are repeated r = 1, 2, 3, .., z – for different values of nsew,max and median values of nsew(0.5) = f(nsew(m), r) are denoted based 354 

on empirical distributions, 355 

i) steps a–h are conducted for different catchment characteristics,  356 

https://doi.org/10.5194/hess-2023-63
Preprint. Discussion started: 11 April 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

j) graph pF = f(nsew(0.5)) is drawn. 357 

 358 

4. Results 359 

4.1. Uncertainty analysis – GLUE (module 3) 360 

 Based on SWMM simulation results including uncertainty of calibrated parameters (Table S1), the likelihood functions 361 

were determined (Kiczko et al., 2018). For the observational events (30 May 2010 and 8 July 2011) used to identify the SWMM 362 

parameters, it was found that 96% of the measurement points included the calculated confidence interval. For the validation sets, 363 

90% of the observation points fall within the bands for the 15 September 2010 event and 70% for 30 July 2010 (Figure S1). The 364 

results of the likelihood function calculations for the calibrated SWMM model parameters are given in Figures S2 – S3 in 365 

Supplementary Information.  366 

 367 

4.2. Simulations of stormwater network operation with regard to uncertainty (module 4)  368 

 The results of variation of specific flood volume for the separated sub-catchments has been presented in Figure 3. Based on 369 

the obtained curves it was stated that the uncertainty of SWMM parameters influenced the simulation results, which was confirmed 370 

by the great variability of the 1% and 99% percentile values for each sub-catchment.  371 

 372 

Figure. 3. Variability of specific flood volume for sub-catchments. 373 

 374 
The median values, enabled to identify that the largest specific flood volume was for sub-catchment J (14.90 m3·ha-1), and 8.29 m3·ha-375 

1 for the sub-catchment S (Figure 3). The simulation results for the 1% percentiles showed that for adopted rainfall events (Pt > 5.0mm 376 

and tr < 150 min) stormwater flooding occurred in all sub-catchments. It was demonstrated that problems with operating of the 377 
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stormwater network are present in each sub-catchment, since the calculated values of percentiles (75%, 99%) are higher than 13 378 

m3·ha-1. This indicates that the stormwater network requires modernisation. 379 

 380 

4.3. Determination of the logistic regression model (module 5) 381 

A LRM was built based on the operational simulation of the stormwater network. The model can be used to identify specific 382 

flood volume and for decision-making regarding corrective actions of the stormwater system. The relationship from Equation (2) 383 

was described by the following linear combination: 384 

𝑋𝑟𝑎𝑖𝑛 = 4.05 ∙ 𝑃𝑡𝑜𝑡 − 0.18 · 𝑡𝑟 − 54.15                          (7)                                                              385 

                        𝑋𝑆𝑊𝑀𝑀 = 0.23 ∙ 𝛼 − 79.40 ∙ 𝑛𝑖𝑚𝑝 + 6.23 ∙ 𝛽 + 0.33 ∙ 𝛾 + 234.12 ∙ 𝑛𝑠𝑒𝑤                           (8)                 386 

𝑋𝐶𝑎𝑡𝑐ℎ𝑚 = 76.72 · 𝐼𝑚𝑝 + 40.77 ∙ 𝐼𝑚𝑝𝑑 − 0.01 ∙ 𝑉𝑘 − 1967.04 ∙ 𝐺𝑘 − 1169.00 ∙ 𝐺𝑘𝑑 − 20.33 · 𝐽𝑘𝑝          (9) 387 

For other independent variables (Table S2) the determined coefficients were statistically insignificant in prediction confidence band 388 

0.05. Standard deviations of the coefficients estimated from the logit model and the test probabilities are presented in Table S2. The 389 

best fit of the computed results to the measurement data was obtained for pm,cr = 0.75. For the test data set (20%) the following values 390 

were obtained: SPEC = 95.24%, SENS = 84.62% and Acc = 87.87%.  391 

For the determined independent variables (Equation 7, 8), calculations were performed with the LRM and SWMM model 392 

(for 35 rainfall events, Pt ≥ 5 mm and tr ≤ 120 min) assuming values of catchment characteristics and topological data within ±20% 393 

in the separated sub-catchments. The simulation variants analysed and calculation results are given in Table S4 – S11. The results 394 

obtained confirm that the determined LRM model can be applied in a wider range than shown in Table 1. The maximum difference 395 

in the number of events when κ > 13 m3·ha-1 by the ML model and SWMM for Imp = 0.26 - 0.50, Impd = 0.32 - 0.66, Gk = 0.0068 396 

- 0.011 m3·ha-1, Gkd = 0.0009 –  0.0013 m3·ha-1 does not exceed 4 episodes, which confirms the usefulness of the model. 397 

 398 

4.4. Sensitivity analyses (module 6) 399 

 For rainfall depth Ptot = 10 mm and duration tt = 30 – 90 min, the sensitivity coefficients for the SWMM model were 400 

determined, based on Equation (4). For calculation of Sxi the values established during calibration were adopted (Kiczko et al., 2018). 401 

The computation results for two parameters of the SWMM model (β and nimp,) are presented in Figure 4. These two parameters 402 

appeared to have the most significant impact on specific flood volume and, at the same time, they present a vastly different impact 403 

on the dynamics of changes regarding Sxi = f (tr, Imp, Impd, Vk, Jkp); the calculation results for the other SWMM model parameters 404 

are given in Figures S4–S8 (Supplementary Information).  405 

 The Figure 4 and Figures S4 – S8 indicated that for the adopted values of tr and Imp, Impd, Vk, Jkp, the highest values of 406 

Sxi was obtained for correction coefficient percentage of impervious areas (β), Manning roughness coefficient for sewer 407 

channels (nsew) and Manning roughness coefficient for impervious areas (nimp). Retention depth of impervious areas (dimp) had 408 

the lowest impact on the results of specific flood volume. An increase of rainfall duration results in higher values of  Sβ, Snimp 409 
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(Figure 4). The lowest sensitivity coefficients were obtained for tr = 30 min while the highest for tr = 90 min. An increase of 410 

Imp, Impd results in a decrease of Sβ and Snimp sensitivity coefficients. 411 

 412 

Figure 4. The impact of rainfall duration (tr) and catchment characteristics (Imp, Impd, Vk, Jkp) on sensitivity coefficients: 413 

(a) Sβ, (b) Snimp. 414 
 415 

For instance, an increase of Imp from 0.34 to 0.36 results in a decrease of Sβ from 1.23 to 0.28; identical values were obtained 416 

for Impd (Figure 4). Moreover, an increase of Vk, Jkp, Gk leads to an increase of Sβ and Snimp sensitivity coefficients. Among 417 

analysed catchment characteristics, density of stormwater network (Gk) had the highest impact on sensitivity coefficients, 418 

while longitudinal slope of canal (Jkp) was of the lowest significance, which is confirmed by variability of obtained curves for 419 

subsequent SWMM parameters (Figure 4).For example, when Vk increased from 400m3 to 500 m3, Sβ increased from 0.29 to 420 

0.82. Additionally, a 10% growth of Sβ was observed due to a change of Jkp = 0.004 to Jkp = 0.010. Finally, when Gk increased 421 

from 0.0075 to 0.009 Sβ also increased from 0.29 to 3.03 (Figure 4).  422 

4.6. Implementation of logit model to analyse the operating of the stormwater network and catchment management 423 

(module 7 & 8) 424 

Due to the fact that in the analysed stormwater network an exceedance of specific flood volume was observed, 425 

possible improvements to the network were considered in terms of correcting catchment imperviousness (Imp) as well as 426 

enhanced terrain retention and channel capacity. The results of pm computations are presented in Figure 5, while Figure 6 427 

shows Sβ for variants I, II and III for sub-catchments. Simulation results for the sensitivity coefficients of other SWMM model 428 

parameters (Table S1) and the probability of specific flood volumes are presented in Figures. S9–S17.  429 
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A decrease of Imp by 10% in sub-catchment J has negligible impact on pm value, while in sub-catchment S it results 430 

in the decrease of specific flood volume probability by 10% (Figure 5a, 5b). It was found that decrease of catchment 431 

imperviousness (variant I) leads to improvement of stormwater system operation (Figure 5). The greatest reduction in volume 432 

flooding was obtained for variant III, when pm values decreased by 2% and 36% for sub-catchments J and S (Figure 5d).  433 

 434 

Figure 5. Probability of specific flood volume in sub-catchments for: (a) present state (p0) and for (b) I, (c) II, (d) III 435 

corrective actions variants. 436 

Based on the pm values in catchments J, M, N, S for corrective action variant III, it was found that, despite the increase in 437 

retention depth, channel capacity and reduction in imperviousness of the catchments, there was hydraulic overloading (κ > 13 438 

m3·ha-1) in the sub-catchments. This indicates the need for further changes to both the catchment and the stormwater network 439 

than was assumed. For variants I, III the Imp values for the sub-catchment are below the applicability range of the logit model, 440 

so mechanistic model simulations were performed to verify the results (Table S4). The results of the model calculations confirm 441 

their high agreement; out of 72 cases, identical results were obtained in 68 cases. The calculations performed (variant I, II, III) 442 
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for the sub-catchment showed a greater influence of changes in terrain retention and channel capacity on the sensitivity 443 

coefficients than the probability of specific flood volume (Fig. 6). For catchments J, S, a 10% decrease in Imp (variant I) 444 

increased Sβ by 7.55 times and 17.50 times (Fig. 6a, 6d). For variant II (increasing catchment retention), sensitivity coefficients 445 

were found to be higher than 51% (catchment S) and 59% (catchment J) compared to variant I, and the highest Sβ was obtained 446 

in variant III. The Sβ values for sub-catchment S are higher than in catchment J by 20.7 times, 19.3 times and 14.7 times for 447 

variants I, II and III, respectively. These results provide relevant information for planning retention infrastructure that reduces 448 

outflow.  449 

 450 

Figure 6. Sensitivity coefficient (Sβ) in sub-catchments for: (a) present state (0) and for (b) I, (c) II, (d) III  451 

corrective action variants. 452 
 453 

4.7. Probability of failure (module 9) 454 

Based on SWMM model parameters determined via the MCM method (Table S1), probability of failure (pF) was 455 

computed for convection rainfall in Kielce with a duration time of tr=30 min and Ptot= 9.61 mm. The following threshold values 456 
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of nsew(m) were adopted for calculations: nsew(m) = 0.015 – 0.045 m-1/3·s, coupled with three variants of catchment characteristics: 457 

Imp = 0.36 and Impd =0.40; Imp = 0.35 and Impd = 0.40; Imp = 0.35 and Impd = 0.42. The impact of canal retention (Vk = 458 

750, 850, 950 m3); density of stormwater network (Gk = 0.0075, 0.0080, 0.0085 m·ha-1; Gkd = 0.005, 0.006, 0.007 m·ha-1) in 459 

upper and lower part of the catchment on probability of failure (pF) was also analysed. The Manning roughness coefficients of 460 

the channels (nsew) for the analysed variants were presented as empirical distribution (CDF). In Figure 7a, 8a the results for 461 

Imp = 0.36, Impd = 0.40 and Vk = 750, 850, 950 m3 are presented, while other variants are shown in Figures S18, S19.  462 

 463 

Figure 7. (a) Empirical distributions of threshold values of Manning roughness coefficients of channel (nsew). (b) Impact 464 

of Manning roughness coefficient of channel on failure probability (pF) in relation to Imp, Impd. 465 

 466 
Figure 7b presents the impact of nsew=f(nsew(m)) for percentiles 0.25 and 0.50 (based on the curves in Figures 7b, 8b, 8c, 8d, 467 

S25, S26 the values of the respective percentiles for the analysed nsew(m)) on the probability of failure (pF). Assuming that 468 

Manning roughness coefficients – nsew(un) determined by MC simulation which exceeds the threshold triggers the corrective 469 

actions of sewer pipes resulting in reduction of roughness below nsew(m) following the condition in which the stormwater 470 

network functions 𝑝𝑚 = 𝑓(𝑋𝑟𝑎𝑖𝑛 , 𝑋𝑆𝑊𝑀𝑀 , 𝑋𝐶𝑡𝑐ℎ𝑚) > 0.75  for an independent rainfall event, it was found out, that an 471 

appropriate decrease of percentiles (0.25 and 0.50 - median) leads to improved network operation and to a lower failure 472 

probability (Figures. 7a, 7b). It was observed that the change of percentile 0.50 for nsew for a sample from MC simulation leads 473 

to a decrease from 0.028 m-1/3·s to 0.021 m-1/3·s (as a result of correction nsew(un) <nsew(m)) and to improved stormwater network 474 

operation understood as a lower probability of failure (decrease of pF from 0.68 to 0.42 for Imp = 0.36 and Impd = 0.40). These 475 

results confirm the significance of catchment characteristics (Imp, Impd) for the operability of a stormwater network. For Impd 476 

= 0.40, the reduction in catchment impervious area (Imp) from 0.36 to 0.35, at percentile nsew = 0.019 m-1/3·s results in a 477 

decrease in failure probability from pF = 0.42 to pF = 0.33 (Figure 7b). 478 

Great impact of channel retention (Vk) and density of stormwater network in the upper and lower part of a catchment 479 

(Gkd and Gk, respectively) on probability of failure pF were indicated (Figure 8). For nsew < 0.0215 m-1/3·s pF reached higher 480 
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values (max. 0.41) than for Vk = 850 m3 and Vk = 950 m3. The highest failure probability (pF = 0.80) was obtained for Vk = 481 

750 m3 (nsew = 0.031 m-1/3·s), while the lowest pF = 0.65 was obtained for Vk = 950 m3 (Figure 8b).  482 

 483 

Figure 8. (a) Empirical distributions of threshold values of Manning roughness coefficients of channels (nsew) for  484 

Vk = 950m3. Impact of Manning roughness coefficient for channel on failure probability (pF) in relation to: (b) Vk – 485 

canal retention, (c) Gk - length of stormwater channel per impervious area in a catchment (m·ha-1), (d) Gkd - length of 486 

a channel per impervious area below closing cross-section (m ha-1). 487 

 488 
Furthermore, the highest probability of failure pF = 0.79 was obtained for Gk = 0.0075 m·ha-1 (nsew = 0.031 m-1/3·s), while the 489 

lowest for Gk = 0.0085 m·ha-1  (nsew = 0.0276 m-1/3·s) (Figure 8c). It was established that for nsew < 0.023 m-1/3·s computed 490 

values of pF for Gk = 0.0075 m·ha-1 and Gk = 0.0080 m·ha-1 are higher than 0.41. Moreover, the highest failure probability pF 491 

for nsew = 0.035 m-1/3·s was equal to 0.82 for Gkd = 0.005 m·ha-1, while for Gkd = 0.007 m·ha-1 it was 0.73 (Figure 8d).  492 

 493 

https://doi.org/10.5194/hess-2023-63
Preprint. Discussion started: 11 April 2023
c© Author(s) 2023. CC BY 4.0 License.



20 

 

5. Discussion 494 

Developing and calibrating mathematical models to simulate stormwater network operation under hydraulic overloads 495 

is one of the latest areas of research. In comparison to the models used so far (Li and Willems, 2019; Thorndahl 2009), the 496 

logistic regression model proposed in this study includes SWMM model parameters describing catchment retention and, at the 497 

same time, the characteristics of the catchment and stormwater network (Table 4).  498 

 499 

Table. 4. Comparison of developed model for identification of specific flood volume to literature data 500 

Study Criteria M I R C S P 

Duncan et al. (2011) occurrence of flooding             

Jato - Espino et al. (2018) occurrence of flooding             

Jato - Espino et al. (2019) occurrence of flooding             

Li and Willems (2020) occurrence flooding             

Szeląg et al. (2021) volume             

Szeląg et al. (2022a) occurrence of flooding             

Szeląg et al. (2022b) specific flood volume             

Thorndahl et al. (2008) volume             

Verbovski et al. (2022) volume             

Fu et al. (2011) volume             

Chen et al. (2020) volume             

Fraga et al. (2016) volume             

this study specific flood volume             

 501 

where: M (method); the models were divided into two groups: mechanistic (·) and statistical model (˅); R (rainfall); C 502 

(catchment); S (sewer); P (calibration parameter); I (interpretation model, based on estimated factors the impact of analysed 503 

factors on stormwater flooding can be determined). 504 

 505 

Apart from the model developed in this study, the above-mentioned factors are only included in MCM, which have a form of 506 

differential equations. Therefore, they require a large number of simulations in order to determine the impact of selected 507 

variables on computation results of specific flood volume. Free from such drawbacks are statistical models (Table S4) that 508 

take the form of empirical relationships. For models developed with neural networks, there is a need of performing additional 509 

analyses (Ke et al, 2020; Yang et al., 2020). Jato – Espino et al. (2018, 2019) and Li and Willems (2020) analysed stormwater 510 

flooding from manholes based on catchment characteristics and stormwater network characteristics (Table 4). Szeląg et al. 511 

(2022) confirmed their results and developed a model for identification of stormwater flooding in a catchment, but not 512 

considered catchment retention. In this context, the approaches cited above were insufficient to analyse the impact of different 513 

types of pavement (for example roof, road, parking etc.) on sewage flooding. Fu et al. (2011), Thorndahl et al. (2009), Szeląg 514 

et al. (2022b) analysed the uncertainty of the identified parameters, which allowed, for example, to correct for impervious area 515 
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retention, roughness coefficient without being able to correct for catchment imperviousness, which limited the use of the 516 

models in catchment management. The approach proposed in this study is a combination of these two solutions, which provides 517 

a tool which can be successfully implemented to manage other catchments. 518 

The results of this study confirmed the major significance and huge interaction between catchment characteristics and 519 

SWMM model parameters. This fact can be further compared by several references (Li and Willems, 2020; Jato – Espino et 520 

al., 2019; Zhuo et al., 2019) presenting comparisons of flooding simulations in urban catchments. This analysis indicated that 521 

an impervious area in a catchment (Imp, Impd) leads to the increase of flooding; reverse dependency was obtained by Jato – 522 

Espino et al. (2018) when modelling flooding from manholes. Increase in channel volume above the closing cross-section of 523 

a catchment (Vk) and its longitudinal slope (Jkp) results in the decrease of flooding, that was confirmed for Espoo catchment 524 

in Finland (Jato – Espino et al. 2018). The increase of unit impervious area per the length of main stormwater interceptor (Gk, 525 

Gkd) results in smaller volume of stormwater flooding. This is due to the relationship that the longer the channel, the greater 526 

the number of manholes. Huang et al. (2018) based on observations conducted in a complex stormwater system indicated the 527 

impact of catchment location and hydrological conditions on the peak flow of flooding. Yao et al. (2019) obtained similar 528 

results after computations with a MCM for catchments in Beijing and in Dresden (Reyes – Silva et al. 2020).  529 

Calculation results obtained in this study confirmed relevant impact of rainfall data, catchment characteristics, and 530 

stormwater network characteristics on sensitivity coefficients – relationships between SWMM parameters and specific flood 531 

volume. For rainfall data and catchment characteristics (assumed as constant) it was proved that correction coefficient of 532 

impervious area (β) and the Manning roughness coefficient for channels (nsew) have the greatest impact on specific flood 533 

volume. The results of this computations were consistent with Thorndahl et al. (2009), who simulated flooding from a single 534 

manhole in the Frejlev catchment (Belgium), based on rainfall data and calibrated parameters of a MCM. These findings were 535 

confirmed by calculations Fu et al. (2012) and Prodanovic et al. (2022) respectively for catchments of 400 ha and 8 ha. Szeląg 536 

et al. (2021, 2022b) based on simulations with MCM including uncertainty of SWMM parameters proved the key impact of 537 

Manning roughness coefficient of sewers on specific flood volume (for rainfall event tr = 30 min and Pt = 15.25 mm). Fraga 538 

et al. (2016) used GLUE+ GSA method for a road catchment and indicated the impact of rainfall data (rainfall duration, depth, 539 

temporal distribution) on sensitivity analysis results. It was confirmed in computations of stormwater flooding using logit 540 

model (Szeląg et al. 2022) and specific flood volume calculations with SWMM model (Freni et al. 2012). Xing et al. (2021) 541 

used MCM to determine characteristics of spatial development and stormwater characteristics in Chongqing catchment (China) 542 

on the depth of stormwater flooding. The aforementioned research studies indicate the impact of rainfall data, catchment 543 

characteristics, and stormwater network characteristics on sensitivity of hydrodynamic simulation model for stormwater 544 

flooding.  545 

The sensitivity analysis development proposed in this study enabled its application for catchments with different 546 

characteristics, which is an improvement compared to previously applied, more specified approaches (Cristiano et al. 2019; 547 

Fatone et al., 2021). Differences in probability of occurrence/sensitivity coefficients indicate the influence of catchments 548 

downstream on conditions in the catchment above. The variation in sensitivity coefficients does not account for local conditions 549 
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within the side channels. Due to the creation of successive sub-catchments by combining them, the conditions of the sewer 550 

system in its area are averaged out, making the interpretation of the results difficult. Using the developed tool, catchment 551 

management may become difficult when there is a particularly hydraulically overloaded area within the catchment, which 552 

impacts neighbouring sub-catchments. 553 

As in the case to the sensitivity analysis, in this study the extension of the sewer system failure assessment has been 554 

adapted to enable the implementation for a random catchment (for the sewer system without pump stations). Calculations 555 

outputs showed the influence of the catchment and sewage network characteristics on the failure probability. The introduction 556 

of the maximum allowable value of the Manning roughness coefficient for the sewer channel, enabled to model the 557 

improvement of the operating conditions of the sewage network under uncertainty. A similar approach was used in the study of 558 

Fu et al. (2012) by limiting to probabilistic rainfall characteristics (Del Giudice, et al. 2013) and using a MCM to simulate the drainage 559 

system. Fu et al. (2011) modified the above approach by focusing on the impact of uncertainty in the calibrated parameters on 560 

flooding; however, it was not possible to analyse retention, channel capacity on system performance.  561 

 562 

6. Conclusions 563 

In this study a novel simulator of logistic regression extended by advanced risk assessment was developed for 564 

modeling stormwater systems operation under uncertainty. The proposed model is an alternative approach to mechanistic 565 

models, that can be used at the preliminary stage of analyses related to spatial planning, urban development and expansion etc. 566 

This is of major significance since at the preliminary stage, the data set for building catchment models is limited and urgent 567 

demand for simulation algorithm to assist decision making is required. Assuming Manning roughness coefficients – nsew(un) 568 

estimations that exceed the threshold triggers corrective actions of sewer pipes resulting in a reduction of roughness below 569 

nsew(m) following the condition of proper functioning of the stormwater network (pm > pmcr). Appropriate decrease of percentiles 570 

(0.25 and 0.50 - median) led to improved network operation and to a lower failure probability requirement.  571 

In the adopted hydrodynamic model (based LRM), the impact of rainfall data, catchment characteristics (impervious 572 

areas in the downstream and upstream) and stormwater network characteristics (the length of channel per unit impervious area, 573 

channel slope and volume) as well as SWMM parameters (roughness coefficient for sewer channel, correction coefficient for 574 

percentage impervious area Manning roughness coefficients for impervious area) were included simultaneously. The obtained 575 

simulations results show the strong interaction between the above-listed parameters. This is extremely relevant in the context 576 

of models calibration that can be applied to analyse stormwater network operation and to support the decision-making process 577 

(management of stormwater in an urban catchment). Since the proposed solution analyses the spatial distribution of sensitivity 578 

coefficients, it is possible to identify the most vulnerable areas inside a catchment that require specific attention while 579 

identifying SWMM model parameters, which could also be taken into account when locating measuring facilities. 580 

 581 
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7 Appendices 582 

Appendix A: List of Symbols 583 

 584 
Symbols: 585 

Aimp – area of impervious surface (ha), 586 

dH1 – height difference of the terrain at section above closing cross-section (m), 587 

dHp – height difference at section above closing cross-section (m), 588 

CDF – Cumulative Distribution Function (–),  589 

dimp – retention depth of impervious areas (mm), 590 

dperv – retention depth of pervious areas (mm), 591 

F – catchment surface area (ha), 592 

Gk – length of stormwater channel per impervious area in a catchment (m·ha-1), 593 

Gkd – length of a channel per impervious area below closing cross-section (m·ha-1), 594 

GLUE - Generalized Likelihood Uncertainty Estimation, 595 

Hst – the height of a manhole at closing cross-section (m), 596 

Imp – impervious area, 597 

Impd – impervious area of a catchment of downstream area, 598 

J – average rainfall intensity (l·(s·ha)-1), 599 

Jkp – channel slope above closing cross-section of a catchment 600 

K – total number of sewer manholes (–), 601 

Lk – length of channel above closing cross-section of a catchment (m), 602 

L(Q/θ) – likelihood function, 603 

nimp – Manning roughness coefficient for impervious areas (m-1/3·s), 604 

nperv – Manning roughness coefficient for pervious areas (m-1/3·s), 605 

nsew – Manning roughness coefficients of sewer channels (m-1/3·s),  606 

Qz – denote z-th value from the times series of observed and computed discharges (m3·s-1), 607 

Pt – maximum depth of rainfall (mm), 608 

p – cumulative distribution function (CDF), 609 

pm – probability of specific flood volume, 610 

P(θ) – stands for a priori parameter distribution, 611 

R.t. – height difference of the channel (m), 612 

Sxi – sensitivity coefficient,  613 

xi – independent variables,  614 

SWMM – Storm Water Management Model,  615 
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tr – duration of rainfall (min), 616 

V () – variance,  617 

Vk – volume of stormwater channel (m3), 618 

Vkd – total retention of a catchment. 619 

Vkp – volume of the channel above the closing cross-section of a catchment (m3), 620 

Vrd – catchment retention above the closing cross-section (m3), 621 

Vt(i) – floodings volume from i - th sewer manhole (where: i = 1, 2, 3, …, k) (m3), 622 

W – width of the runoff path in a subcatchment (m), 623 

α – Coefficient for flow path width (–), 624 

β – Correction coefficient for percentage of impervious areas (–), 625 

γ – Correction coefficient for subcatchment slope (–), 626 

ε- a scaling factor for the variance of model residua, used to adjust the width of the confidence intervals, 627 

κ – specific flood volume (m3·ha-1), 628 

 629 

Code availability: The authors announce that there is no problem sharing the used model and codes upon request to the 630 

corresponding author. 631 
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